

## 2020 考研数学二真题与文都图书预测中对照表

## 来源: 文都教育

| 2020 考研数学二真题                                                                                                                                                                                                       | 文都 2020 考研数学图书命中<br>详情                                  | 备注   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| (1) $x \to 0^+$ ,下列无穷小阶数最高的是 $A. \int_0^x \left( e^{t^2} - 1 \right) dt \qquad B. \int_0^x \ln \left( 1 + \sqrt{t^3} \right) dt$ $C. \int_0^{\sin x} \sin t^2 dt \qquad D. \int_0^{1 - \cos x} \sqrt{\sin^3 t} dt$ | 2020《考研数学绝对考场最后八套题》第五套第2题、<br>2020《考研数学绝对考场最后八套题》第八套第1题 | 题型相同 |
| (2) $f(x) = \frac{e^{\frac{1}{x-1}} \ln 1+x }{(e^x-1)(x-2)}$ 第二类间断点的个数为<br>A.1 B.2 C.3 D.4                                                                                                                         | 2020《考研数学决胜冲刺 4<br>套卷》第二套第 2 题                          | 考点相同 |
| (3) $\int_0^1 \frac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}} dx =$ $A. \frac{\pi^2}{4} \qquad B. \frac{\pi^2}{8} \qquad C. \frac{\pi}{4} \qquad D. \frac{\pi}{8}$                                                           | 2020《考研数学接力题典<br>1800》25 页 4 题                          | 一模一样 |
| (4) $f(x) = x^2 \ln(1-x), n \ge 3$ ,则 $f^{(n)}(0) =$ $A\frac{n!}{n-2} \qquad B. \frac{n!}{n-2} \qquad C\frac{(n-2)!}{n} \qquad D. \frac{(n-2)!}{n}$                                                                | 2020《考研数学绝对考场最后八套题》第二套 10 题                             | 高度相似 |
| (5) 关于函数 $f(x,y) = \begin{cases} xy & xy \neq 0 \\ x & y = 0 \text{ 给出以下结论} \\ y & x = 0 \end{cases}$                                                                                                              | 2020《考研数学复习大全》<br>192页                                  | 覆盖考点 |
| (6) 设函数 $f(x)$ 在区间[ $-2,2$ ][上可导,且 $f'(x) > f(x) > 0$ ,则( )                                                                                                                                                        |                                                         |      |

|                                                                                                                                                   | <u> </u>                                         | 7 _1         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------|
| A. $\frac{f(-2)}{f(-1)} > 1$ B. $\frac{f(0)}{f(-1)} > e$                                                                                          |                                                  |              |
| C. $\frac{f(1)}{f(-1)} < e^2$ D. $\frac{f(2)}{f(-1)} < e^3$                                                                                       |                                                  |              |
| (7)设四阶矩阵 $A = (a_{ij})$ 不可逆, $a_{12}$ 的代数余子式                                                                                                      |                                                  |              |
| $A_{12} \neq 0, \alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为矩阵 $A$ 的列向量组. $A^*$ 为 $A$ 的伴随矩                                                           |                                                  |              |
| 阵.则方程组 $A^*x = 0$ 的通解为(  ).                                                                                                                       |                                                  |              |
| $A. x = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$ ,其中 $k_1, k_2k_3$ 为任意常数                                                                          | 2020《考研数学决胜冲刺 4<br>套卷》第三套 14 题                   | 考点相同<br>解法相同 |
| $B. x = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_4$ , 其中 $k_1, k_2k_3$ 为任意常数                                                                         |                                                  |              |
| $C. x = k_1 \alpha_1 + k_2 \alpha_3 + k_3 \alpha_4$ , 其中, $k_1, k_2 k_3$ , 后为任意常数.                                                                |                                                  |              |
| D. $x = k_1 \alpha_2 + k_2 \alpha_3 + k_3 \alpha_4$ , 其中 $k_1, k_2 k_3$ 为任意常数                                                                     |                                                  |              |
| (8)设 $A$ 为 $3$ 阶矩阵, $\alpha_1, \alpha_2$ 为 $A$ 属于 $1$ 的线性无关的特                                                                                     |                                                  |              |
| 征向量, $lpha_{3}$ 为 $^A$ 的属于特征值-1 的特征向量,则满足                                                                                                         |                                                  |              |
| $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 的可逆矩阵                                                             | 2020《考研数学绝对考场最后八套题》第四套 7 题                       | 考点相同         |
| $A.(\alpha_1 + \alpha_3, \alpha_2, -\alpha_3) \qquad B.(\alpha_1 + \alpha_2, \alpha_2, -\alpha_3)$                                                |                                                  |              |
| $C.(\alpha_1 + \alpha_3, -\alpha_3, -\alpha_3) \qquad D.(\alpha_1 + \alpha_2, -\alpha_3, -\alpha_3)$                                              |                                                  |              |
| (9) 设 $\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln\left(t + \sqrt{t^2 + 1}\right) \end{cases} \frac{d^2y}{dx^2}\Big _{t=1} = \underline{\qquad}.$ | 2020《考研数学决胜冲刺 4<br>套卷》第二套第 3 题、<br>2020《考研数学接力题典 | 考点相同 题型相似    |
| , , ,,                                                                                                                                            | 1800》12页7题、13页1题                                 |              |
| $(10) \int_0^1 dy \int_{\sqrt{y}}^1 \sqrt{x^3 + 1} dx = \underline{\qquad}$                                                                       | 2020《考研数学接力题典<br>1800》44 页 6 题                   | 考点相同<br>题型相同 |
| (11)                                                                                                                                              | 2020《考研数学接力题典<br>1800》38页2题、40页3题                | 考点相同         |

地址: 北京市海淀区西三环北路 72 号世纪经贸大厦 B 座

电话: 010 - 88820136 传真: 010 - 88820119 网址: www.wendu.com

|                                                                                                                                                       | 世纪文都教育科技集团股份有限公                                                           | <u>公刊</u>            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|
| (12)斜边长为 $2a$ 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,设重力加速度为 $8$ ,水密度为 $\rho$ ,则该平板一侧所受的水压力为                                                                     | 2020《考研数学复习大全》<br>177 页例 2                                                | 考点相同 题型相同            |
| (13) 设 $y = y(x)$ 满足 $y'' + 2y' + y = 0$ , 且 $y(0) = 0, y'(0) = 1,  \iint_{0}^{+\infty} y(x) dx = \underline{\hspace{1cm}}$                           | 2020《考研数学接力题典<br>1800》94 页 6 题                                            | 高度相似                 |
| (14) 行列式 $\begin{vmatrix} a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a \end{vmatrix} = $                                      | 2020《线性代数辅导讲义》<br>38 页例 7                                                 | 高度相似                 |
| $y = \frac{x^{1+x}}{(1+x)^x} (x > 0)$ 15. 求曲线 的斜渐近线方程.                                                                                                | 2020《考研数学决胜冲刺 4<br>套卷》第三套第 11 题、<br>2020《考研数学绝对考场最<br>后八套题》第一套 11 题       | 考点相同<br>题型相同<br>解法相同 |
| 16. 已知函数 $f(x)$ 连续且 $\lim_{x\to 0} \frac{f(x)}{x} = 1, g(x) = \int_0^1 f(xt)dt, 求 g'(x)$ 并证明 $g'(x)$ 在 $x = 0$ 处连续.                                   | 2020《考研数学绝对考场最后八套题》第五套 15 题、<br>2020《考研数学接力题典<br>1800》19 页 79 题           | 考点相同 题型相同            |
| 17. 求 $f(x,y) = x^3 + 8y^3 - xy$ 的极值                                                                                                                  | 2020《考研数学决胜冲刺4<br>套卷》第二套20题、第四套<br>19题、<br>2020《考研数学绝对考场最<br>后八套题》第一套第20题 | 题型相同<br>考点相同<br>解法相同 |
| $2f(x)+x^2f(\frac{1}{x})=\frac{x^2+2x}{\sqrt{1+x^2}}$ , 求 $f(x)$ , 且求直线 $y=\frac{1}{2}$ , $y=\frac{\sqrt{3}}{2}$ 与函数 $f(x)$ 所围图形绕 $x$ 轴旋转一周而成的旋转体的体积。 | 2020《考研数学决胜冲刺 4<br>套卷》第四套 21 题                                            | 题型相同<br>解法相同         |

地址: 北京市海淀区西三环北路 72 号世纪经贸大厦 B 座

电话: 010 - 88820136 传真: 010 - 88820119 网址: www.wendu.com

| <u> </u>                                                                                                                                                                                                                                                                              | 上纪文都教育科技集团股份有限么                                                   | <u>公司_</u>           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------|
| 19. 平面 $D$ 由直线 $x = 1, x = 2, y = x 与 x$ 轴围成,计算 $\iint_{D} \frac{\sqrt{x^2 + y^2}}{x} dx dy.$                                                                                                                                                                                         | 2020《考研数学绝对考场最后八套题》第五套 18 题、第二套 19 题                              | 考点相同 题型相同            |
| $f(x) = \int_{1}^{x} e^{r^{2}} dt.$ (1) 证: 存在 $\xi \in (1,2), f(\xi) = (2-\xi)e^{\xi^{2}};$ (2) 证: 存在 $\eta \in (1,2), f(2) = \ln 2 \cdot \eta e^{\eta^{2}}.$                                                                                                                         | 2020《考研数学决胜冲刺 4<br>套卷》第三套第 16 题                                   | 题型相同                 |
| 21. $f(x)$ 可导, $f'(x) > 0(x \ge 0)$ 过原点 O, 曲线 $f(x)$ 上任 意点 M 的切线与 X 轴交于 T, $MP \perp x$ 轴, $y = f(x), MP, x$ 轴围成面积与 $\Delta MTP$ 面积比为 3: 2, 求曲 线方程.                                                                                                                                   | 2020《考研数学绝对考场最后八套题》第四套 19 题、第六套 20 题<br>2020《考研数学重点题型预测班辅导讲义》例 38 | 高度相似                 |
| 22. 设二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2ax_1x_3 + 2ax_2x_3$ 经可<br>逆线性变换 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ 化为 $g(y_1,y_2,y_3) = y_1^2 + y_2^2 + 4y_3^2 + 2y_1y_2.$ (1) 求 a 的值; (2) 求可逆矩阵 P. | 2020《考研数学接力题典<br>1800》68页 26题、110页 9<br>题                         | 题型相同<br>解法类似<br>考点相同 |
| 23. 设 $A$ 为 2 阶矩阵, $P = (\alpha, A\alpha)$ , 其中 $\alpha$ 是非零向量且不是 $A$ 的特征向量. (1) 证明 $P$ 为可逆矩阵. (2) 若 $A^2\alpha + A\alpha - 6\alpha = 0$ ,求 $P^{-1}AP$ ,并判断 A 是否相似于对角矩阵.                                                                                                              | 2020《考研数学接力题典<br>1800》108 页 24 题                                  | 一模一样                 |

地址:北京市海淀区西三环北路 72 号世纪经贸大厦 B 座 电话: 010 - 88820136 传真: 010 - 88820119 网址:www.wendu.com